TISA Products/Validation/Status

D. Doelling, N. Loeb NASA LaRC

L. Avey, D. Keyes, P. Mlynczak, M. Nordeen, C. Nguyen, R. Raju, D. Rutan, M. Sun

9th CERES-II Science Team Meeting City Center at Oyster Point, Newport News, VA, May 6-8, 2006

Outline

- SRBAVG-daily product status
- ISCCP-D2like products status, M Sun
- GSFC GEOS5 vs GEOS4 differences
- Adjusted CERES SRBAVG dataset, N. Loeb
- SYN/AVG/ZAVG status and validation
- GGEO (MTSAT calibration) status
- TISA Edition3 Improvements
- Edition number madness explained
- Products and schedules
- TISA objective is to time and space average all parameters thrown our way
 - Use linear interpolation as a default
 - Use SW directional models to estimate daily flux
 - Incorporate GEO retrieved cloud and fluxes to estimate diurnal signal

SRBAVG Daily

SRBAVG-Daily on Ed2E

- Provide daily fluxes and cloud properties
 - SRBAVG-daily<u>1</u> is the GEO (GEO & CERES) TOA, surface fluxes and clouds
 - SRBAVG-daily<u>2</u> is the nonGEO (CERES-only) TOA fluxes and MODIS clouds
- SRBAVG-daily2: also includes the MODIS product aerosols
 - 0.65μm and 1.6μm (Ignatov aerosols) in SRBAVG1 product
 - Monthly zonal incoming solar flux
 - Daily Snow/Ice coverage maps (snow+ice+IGBP permanent)
- Include Model B Terra based TOA clear-sky albedo map
- Corrects the RAPS mode GGEO/CERES SW normalization error
- SRBAVG product delayed in order to expedite SYN/AVG/ZAVG product

SRBAVG-daily temporal averaging validation

- Make sure all the daily parameters average to the monthly mean
 - To test, compute monthly mean flux from daily means from stand alone IDL HDF read code
 - Compare to monthly mean on SRBAVG files
- Overall consistency between daily and monthly
 - LW and cloud properties are linearly averaged
 - Daily twilight correction is applied to TOA SW daily fluxes
 - Surface Model A and B SW flux parameterization fail with SZA >80°
 - Estimate failed SW surface fluxes by interpolating transmission for SW down and surface albedo for SW up
 - Weight by daily flux SW flux to derive monthly mean flux
- Outstanding Issues
 - nonGEO clear-sky TOA LW, which is based on half-sine fit on monthly hourly fluxes, due to lack of clear-sky observations
 - Daily clear-sky TOA LW will be computed from daily half-sine fit
 - the average of the daily means will not equal the monthly mean

of nonGEO clear-sky LW measurements during Jan 2001

Averaged daily - monthly mean clear-sky LW flux Jan 2001

Total-sky SFC Net SW flux daily derived - SRBAVG monthly means

G5-G4 Comparison

G5 impact on the CERES flux product

- How does the GSFC G5 product impact the CERES fluxes?
 - G5 atmospheric profiles could change the ADM scene ID
 - Changes in MODIS derived cloud properties
 - Changes in clear-sky identified MODIS pixels
- How does the G5 profiles impact the GEO derived fluxes?
 - GEO cloud properties more sensitive to G5 profile than MODIS
 - 2 channel retrieval, at night clear-sky determined from predicted TOA clear-sky temperature
 - GEO derived BB fluxes are normalized to CERES fluxes
 - Normalization should work no matter the change in GEO cloud properties
 - Good test of the TISA SW regional normalization algorithm
 - · Expect to see minimal global flux difference
- Procedure:
 - Process 3 months of SSF, SFC, GGEO and SRBAVG products using existing algorithms, with G5 input
 - Terra Jan06, Aqua Jan06, and Terra Jul04
- Compare with results SRBAVG Ed2D monthly mean product

G5 - G4, TOA SW, Aqua Jan06

G5-G4, TOA LW, Aqua Jan06

TOA Flux G5-G4 Comparison Table

Bias (Wm ⁻²) RMS	Aqua Jan06	Terra Jan06	Terra Jul04
Clear-sky SW nonGEO 50.5	0.01	-0.03	0.02
	1.17	1.35	1.45
Clear-sky LW nonGEO ~263	-0.01	-0.04	-0.11
	1.64	1.59	2.00
Clear-sky LW GEO ~259	-0.06	-0.11	-0.20
	2.01	1.97	2.40
All-sky SW GEO ~101	0.03	0.01	0.02
	0.73	0.76	0.77
All-sky LW GEO ~234	0.06	-0.02	0.05
	0.36	0.51	0.55

- Note biases < 0.1 Wm⁻² except for clear-sky LW
- GEO SW regional normalization algorithm is working

G5-G4, All-sky SFC Down LW, Model B Terra Jul04 0 G5-DAO-(W/m³) 0 G5-DAO-(W/m**°**) -16 16 -16 16 -24 24 reg RMS 90N-90S G5 G5-DAO G5-DAO reg RMS 90N-90S G5 326.20 **0.60** Land > 67% 8.**49** Land > 67% **3.38** Land > 67% 9.**12** Land > 67% 347.30 Jan06 Aqua

NASA Lang

SFC Flux G5-G4 Comparison Table based on land statistics

Land Bias ModelB Land RMS	Aqua Jan06	Terra Jan06	Terra Jul04
Clear-sky Net SW	0.94	0.92	0.00
~212	2.23	2.19	2.21
All-sky Net SW	0.80	0.78	-0.02
~170	1.98	1.95	1.99
Clear-sky DN SW	0.94	0.92	0.02
~240	2.22	2.19	2.17
All-sky DN SW	0.80	0.79	0.01
~192	2.04	2.04	2.09
Clear-sky Net LW	-3.99	-3.98	-3.18
~ -76	7.71	7.67	7.57
All-sky Net LW	-4.24	-4.22	-3.86
~ -53	7.57	7.54	7.51
Clear-sky DN LW	0.85	0.95	4.22
~322	8.39	8.39	9.35
All-sky DN LW	0.50	0.60	3.38
~ 346	8.48	8.49	9.12

- Some Land SFC SW flux differences are ~ 1Wm⁻²
- SFC Land LW flux differences are ~ 4Wm⁻²

G5-G4 GEO cloud property differences, July 2004

• Differences are mainly over land, especially over Africa and tropics

NASA Langley Research Center / Atmospheric Sciences

CERES

G5-G4 GEO cloud property differences, Jan 2006

-100

0.10

-020

0.04

0.12

-020

-0.10

0.00

G5-G4 MODIS(CERES) cloud property differences

Adjusted SRBAVG fluxes

Net Flux Optimal Global Closure

- Objective is to close the net flux imbalance by adjusting SW & LW TOA fluxes according to known uncertainties.
 - Norm will address topic in following presentation
 - Mainly instrument uncertainty
 - Apply instantaneous uncertainty adjustments to Norm's SSF-daily database to derive monthly mean regional adjustment
 - Apply regional adjustments to the SRBAVG GEO product as final output
 - Able to sidestep CERES production, process 5 years in 1 day
- Opportunity to validate TISA temporal averaging
 - Compare monthly means from Norm's daily SSF database with SRBAVG nonGEO fluxes
 - SSF database comprised of (GMT) daily gridded day and night flux means from SSF
 - Norm first derives SSF daily SW fluxes and then averages all footprint daily fluxes for the day including regions with multiple measurement times
 - SRBAVG first spatially averages the footprint fluxes and then uses the mean cloud property directional model to interpolate between gridded measurements
 - SSF database averages all LW footprints for the day regardless of multiple overpasses, SRBAVG interpolates between measurement times

SSFdaily - nonGEO TOA SW flux

SSFdaily - nonGEO All-sky SW flux, July 2002

SSFdaily - nonGEO All-sky global SW flux timeline

5-Year Annual Flux Means

60 mon	th mean	SSF-daily	nonGEO
Clear	linear	267.26	267.05
LW	half-sine	266.68	266.41
All-sky	linear	238.33	237.90
LW	half-sine	237.65	237.70
Clear S	W	51.35	51.24
All-sky SW		96.91	96.71

• Two independent approaches giving similar global means

SYN/AVG/ZAVG products

TSI/SYNI/SYN/AVG/ZAVG SARB Product

- Beta4 Code delivered to the DAAC
 - Code deliveries now required work both on SGI and cluster
 - TSI (Dec07), SYN (Dec07), SYN/AVG/ZAVG (Feb08)
 - TSI code has not been promoted, Magneto environment issues
 - SYN/AVG/ZAVG takes ~ 3 days to process, working on optimizing the code
 - If no other major problems allow six weeks for testing (mid June)
- Beta4 process all the seasonal months for both Aqua (Jul02-Oct05) and Terra (Apr00-Oct05) to monitor any long-term artifacts
 - Make sure that SRBAVG = ZAVG global monthly means
 - Best case scenario, 1.5 months, evaluate 1 month, (end Aug)
- Should be an Edition2 product by the end of 2008 in order to meet Terra/Aqua senior review funding requirements
 - Given no show stoppers, 4 months to process entire record, (end Dec)

Comparison of SYN/AVG and SURFRAD PAR fluxes, Terra July 2002 product

Comparison of SYN/AVG and SURFRAD PAR monthly 3-hourly fluxes, Terra July 2002 product

• Surfrad sites: Bondville, IL; Desert Rock, NV, Fort Peck, MT; Goodwin Creek, MS; Penn State, PA; Table Mountain, CO

GGEO MTSAT status

MTSAT issues delaying GGEO processing

- MTSAT cloud properties matched at Terra times were vastly different then for GOES-9 or GMS-5
 - Increase in clear-sky amount for regions with large SZA
 - Noticed that many regions near the terminator had counts or radiances=0 even though the SZA<90°
 - Noticed a nonlinear response that resulted in negative radiances for low count scenes.
 - Working with Don Garber to either use a dual linear or hyperbolic fit when regressing coincident ray-matched Terra/MTSAT radiances
 - Applying lessons learned with Terra and Aqua to VIRS/MTSAT matches to make sure that all SZA are well calibrated
- MTSAT images were reformatted
 - McIDAS ingested MTSAT images from Nov05-Aug07 using the GMS-5 receiving equipment
 - Used JPEG compression to reduce resolution from 4 to 5km and from 10bit linear to 8bit squared visible count to radiance relationship
 - From Sep07 to present receiving nominal resolution images
 - Develop calibration technique with 10bit data and then apply to 8bit

Note that many terminator MTSAT pixels have counts of 0 when the SZA<90°

MTSAT VIS, Sept 17, 2007

MTSAT 10bit visible calibration, Sep 2007

MTSAT/Terra

MTSAT/Aqua

MTSAT/GOES11

Edition3 improvements

Edition 3 improvements

- LW NB-BB and ADM improvements
 - Develop LW NB-BB model using ADM binning and LW 5° regional normalization similar to GEO derived BB SW
 - Currently using one global parameterization using NB flux and column RH humidity and instantaneous normalization
- LW cubic spline interpolation over land
 - To estimate peak daytime flux using 3-hourly sampling
- Improvements in the clear-sky GEO mask
 - Clear-sky scene identification weakest part of GEO cloud retrieval algorithm
 - Derive clear-sky albedo maps from GEO (now using monthly MODIS clear-sky maps)
 - Mitigate effects of dark cold scenes being classified as clearsky in GEO algorithm

LW land cubic spline interpolation

- Truth are 1-hourly GERB measurements
- Interpolation performed on 3-hourly measurements
- Cubic spline captures the daytime heating peak given 3-hourly fluxes
- Linear always underestimates the truth near noon

Comparison of monthly hourly GEO LW flux bias Bias Linear - GERB Truth Linear Bias Cubic Spline - GERB Truth Cubic spline July 2004 LST 06 July 2004 LST 06 INPUT FILE: bigs_cubic_06.dat 60° 40° 40° 20° 20° 20° 0° 0° -20° -20° -20° -20° July 2004 -40° -40° -40° -40° 0° 15° - 1 Watts per square meter Watts per square meter Bias Linear - GERB Truth Bias Cubic Spline - GERB Truth July 2004 LST 12 July 2004 LST 12 INPUT FILE: bias_linear_12.dat INPUT FILE: bias_cubic_12.dat 60° 40° 20° 20° 20° 20° 0° 0° -20° -20° -20° -20° -40° -40° -40° -60° -45° -30° -15° 15° CERES -60° -45° -30° -15° 0° 15° es Watts per square meter Watts per square meter

Plot Generation Date : Mar

GEO clear-sky LW, July 2002

nonGEO - GEO

GEO (use all obs) - GEO

- GEO clear-sky monthly mean LW is computed from days with CERES measurements only, same days as the nonGEO product
- Right panel difference plots shows the effect of using all GEO measurements days instead of only the CERES measurement days
- Greatest difference occurs in very cloudy regions
- GEO clear-sky retrievals not as robust as MODIS using only a VIS and IR channel

TISA Schedule

CERES Advanced TISA Processing

Terra CERES Edition Products

- CERES Edition table (link in the TISA DQS)
 - http://eosweb.larc.nasa.gov/PRODOCS/ceres/edition2_product_versions.html

Edition2	Terra SSF	Terra SFC	Terra SRBAVG
A	SSF Edition2A	SFC Edition2A. SFC Edition2A Cautions	
В	SSF Edition2B ADM improvements	SFC Edition2B. SFC Edition2B Cautions	
С	SSF Edition2B	SFC Edition2C	SRBAVG Edition2C no GEO SW fluxes
D	SSF Edition2B	SFC Edition2C	SRBAVG Edition2D GEO SW fluxes provided SRBAVG Edition2D Cautions
E	SSF Edition2B (end April 2006)	SFC Edition2C	* SRBAVG_Edition2E
F	SSF Edition2F (begin May 2006) MODIS collection 5	SFC Edition2F code=Terra_SFC_Edition2C	* SRBAVG_Edition2F code=Terra_SRBAVG_Edition2E

Edition2	Terra SSF	Terra CRS	Terra FSW	Terra SYN/AVG/ZAVG
A	SSF Edition2A	CRS Edition2A		
В	SSF Edition2B ADM improvements	CRS Edition2B CRS improvements		
С	SSF Edition2B (end April 2006)	CRS Edition2B	FSW_Edition2C	SYN-AVG-ZAVG Beta3. * AVG_Edition2C
F	SSF Edition2F (begin May 2006) MODIS collection 5	CRS_Edition2F code=Terra_CRS_Edition2B	FSW_Edition2F code=Terra_FSW_Edition2C	* AVG_Edition2F code=Terra_AVG_Edition2C

products are consistent across an Edition2 letter or row in the table code= refers to the product code used to process the named Edition2 product

Aqua CERES Edition Products

- CERES Edition table (link in the TISA DQS)
 - http://eosweb.larc.nasa.gov/PRODOCS/ceres/edition2_product_versions.html

Edition2	Aqua SSF	Aqua SFC	Aqua SRBAVG
A	SSF Edition2A Error in Model B SW sfc fluxes	SFC Edition2A code=Terra_SFC_Edition2C	SRBAVG Edition2A code=Terra_SRBAVG_Edition2D SRBAVG Edition2A Cautions
В	SSF Edition2B (end April 2006) Corrected Model B SW sfc fluxes	SFC Edition2B code=Terra_SFC_Edition2C	* SRBAVG_Edition2B code=Terra_SRBAVG_Edition2E
С	SSF Edition2C (begin May 2006) MODIS collection 5	SFC Edition2C code=Terra_SFC_Edition2C	* SRBAVG_Edition2C code=Terra_SRBAVG_Edition2E

Edition2	Aqua SSF	Aqua CRS	Aqua FSW	Aqua SYN/AVG/ZAVG
A	SSF Edition2A Error in Model B SW sfc fluxes	CRS Edition2A	FSW Edition2A code=Terra_FSW_Edition2C	
В	SSF Edition2B (end April 2006) Corrected Model B SW sfc flux	CRS Edition2B CRS improvements	FSW_Edition2B code=Terra_FSW_Edition2C	* AVG_Edition2B code=Terra_AVG_Edition2C
С	SSF Edition2C (begin May 2006) MODIS collection 5	CRS_Edition2C code=Aqua_CRS_Edition2B	FSW Edition2C code=Terra_FSW_Edition2C	* AVG_Edition2C code=Terra_AVG_Edition2C

^{*} projected

products are consistent across an Edition2 letter or row in the table code= refers to the product code used to process the named Edition2 product

CERES spatially gridded and temporally averaged (level 3) products

ERBE-like

- TOA Fluxes based on ERBE (scene id, ADM) algorithms and output format
- Instantaneous, daily, monthly hourly (ES-9), monthly means (ES-9, ES-4)
- Terra Ed2 (Mar00-Dec06), Ed1CV (2 month lag)
- Aqua Ed2 (Jul02-Dec06), Ed1CV (2 month lag)

• SFC

- Instantaneous gridded (SSF) CERES footprint TOA and surface fluxes, clouds and aerosols, output in local time
- Terra Ed2 (Mar00-Dec06)
- Aqua Ed2 (Jul02-Dec06)

FSW

- Instantaneous gridded (SSF & CRS) radiative transfer modeled profile fluxes consistent with CERES TOA fluxes, clouds and aerosols, output in GMT time
- Terra Ed2 (Mar00-Dec06)
- Aqua Ed2 (Jul02-Dec06)
- Extend ERBE-like, SFC and FSW, datasets to Dec07
 - First to Aug07, processing takes 6-9 months after instrument coefficient delivery
 - Second to Dec07, currently no plans for 2008, Use GEOS-5 in 2008

CERES spatially gridded and temporally averaged (level 3) products

- ISCCP-like-MODIS (new)
 - Pc-Tau stratified (SSF) MODIS retrieved cloud properties
 - Similar to ISCCP-D2 output of monthly GMT 3-hourly and means
 - Terra Ed2 (process Mar00-Dec06, due Fall 2008)
 - Aqua Ed2 (process Jul02-Dec06, due Fall 2008)
 - Extend to Dec07 on same schedule as SFC
- ISCCP-like-GEO (new)
 - Pc-Tau stratified 5-geostationary imager retrieved cloud properties
 - GEO (process Mar00-Oct05, due Dec 2008)
- SRBAVG
 - Temporally averaged gridded, zonal and global TOA and surface fluxes, clouds and aerosols, output in local time as monthly hourly and monthly means
 - nonGEO product contains CERES fluxes and clouds only
 - GEO product contains both CERES and GEO fluxes and clouds
 - Terra Ed2 (Mar00-Oct05)
 - Aqua Ed2 (Jul02-Oct05) (New)

CERES spatially gridded and temporally averaged (level 3) products

- SRBAVG Ed2E Daily means (new)
 - Same as SRBAVG except for daily output
 - Terra Ed2 (process Mar00-Oct05, due Nov 2008)
 - Aqua Ed2 (process Jul02-Oct05, due Dec 2008)
- SYN/AVG/ZAVG (new)
 - Temporally averaged synoptic radiative transfer modeled profile fluxes consistent with CERES and GEO TOA fluxes, clouds and aerosols
 - GMT 3-hourly (SYN), monthly 3-hourly and monthly means (AVG), and zonal and global means (ZAVG)
 - Terra Ed2 (process Mar00-Oct05, due Dec 2008)
 - Aqua Ed2 (process Jul02-Oct05, due Feb 2009)
 - Terra Beta3 (Mar00-Sep04)
- Extend SRBAVG, ISCCP-like-GEO and SYN/AVG/ZAVG to Dec07
 - First to Dec06, late 2008 SRBAVG, mid 2009 SYN/AVG/ZAVG
 - Second to Dec07 ~ 1 year after SFC

